organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dimethyl 5-nitroisophthalate

Min-Hao Xie, Pei Zou, Yong-Jun He, Ya-Ling Liu and Biao Huang*

Jiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China Correspondence e-mail: xiemh0704@sina.com

Received 9 July 2008; accepted 3 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.073; wR factor = 0.172; data-to-parameter ratio = 12.2.

The nitro group in the title compound, $C_{10}H_9NO_6$, is rotated by $10.9 (5)^{\circ}$ out of the plane of the benzene ring.

Related literature

For related literature, see: Bjorsvik et al. (2001); Cutroneo et al. (2007); Enzweiler et al. (2006).

Experimental

Crystal data C10H9NO6 $M_r = 239.18$

Triclinic, $P\overline{1}$ a = 4.0130 (8) Å c = 12.643 (3) Å Mo $K\alpha$ radiation $\alpha = 106.11 \ (3)^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ $\beta = 93.74(3)^{\circ}$ T = 293 (2) K $\gamma = 91.46 \ (3)^{\circ}$ $0.40 \times 0.05 \times 0.05 \text{ mm}$ V = 517.97 (18) Å³ Data collection Enraf-Nonius CAD-4 1885 independent reflections diffractometer 1144 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$ Absorption correction: ψ scan (North et al., 1968)) 3 standard reflections $T_{\min} = 0.950, \ T_{\max} = 0.994$ every 200 reflections 2178 measured reflections intensity decay: none Refinement $R[F^2 > 2\sigma(F^2)] = 0.072$ 154 parameters $wR(F^2) = 0.172$

Z = 2

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995): program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

H-atom parameters constrained

 $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^{-1}$

 $\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

The Key Laboratory of Nuclear Medicine of the Ministry Health of China is thanked for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2086).

References

b = 10.660 (2) Å

S = 1.01

1885 reflections

Bjorsvik, H.-R., Priebe, H., Cervenka, J., Aabye, A. W., Gulbrandsen, T. & Bryde, A. C. (2001). Org. Process Res. Dev. 5, 472-478.

Cutroneo, P., Polimeni, G., Curcuruto, R., Calapai, G. & Caputi, A. P. (2007). Pharmacol. Res. 56, 35-41.

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Enzweiler, C. N. H., Höhn, S., Taupitz, M., Lembcke, A. E., Wiese, T. H., Hamm, B. & Kivelitz, D. E. (2006). Acad. Radiol. 13, 95-103.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2008). E64, o1736 [doi:10.1107/S1600536808024938]

Dimethyl 5-nitroisophthalate

M.-H. Xie, P. Zou, Y.-J. He, Y.-L. Liu and B. Huang

Comment

The title molecule (Fig.1), is useful as an important intermediate for the preparation of iodinated *X*-ray contrast media, in particular non-ionic ones such as Iopamidol, Iohexol and Ioversol, being used clinically all over the world (Cutroneo *et al.*, 2007; Bjorsvik *et al.*, 2001; Enzweiler *et al.*, 2006). This crystal structure shows that the benzene ring and the nitro group are only slightly inclined, as shown by the torsion angles of O5—N—C7—C6 -10.6 (5)° and of O6—N—C7—C8 -11.2 (5)°.

Experimental

5-nitroisophthalic acid (0.5 mmol,100.6 mg) was dissolved in hot methanol (5 ml), then a drop of concentrated sulfuric acid was added and refluxed for 4 h. The precipitate was filtered off, washed with water and dissolved in 95% ethanol(20 mL). The solution was evaporated in air affording colourless needle crystals suitable for X-ray analysis (yield: 85.2%).

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H = 0.93 (aromatic) and with $U_{iso}(H) = 1.2U_{eq}(C)$ or 0.96 (methyl) and $U_{iso}(H) = 1.5U_{eq}(C)$, respectively.

Figures

Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Dimethyl 5-nitrobenzene-1,3-dicarboxylate

Crystal data	
C ₁₀ H ₉ NO ₆	Z = 2
$M_r = 239.18$	$F_{000} = 248$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.534 {\rm ~Mg~m^{-3}}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

<i>a</i> = 4.0130 (8) Å
b = 10.660 (2) Å
c = 12.643 (3) Å
$\alpha = 106.11 \ (3)^{\circ}$
$\beta = 93.74 (3)^{\circ}$
$\gamma = 91.46 (3)^{\circ}$
$V = 517.97 (18) \text{ Å}^3$

Data collection		
Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.041$	
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.3^{\circ}$	
Monochromator: graphite	$\theta_{\min} = 1.7^{\circ}$	
T = 293(2) K	$h = -4 \rightarrow 4$	
$\omega/2\theta$ scans	$k = -12 \rightarrow 12$	
Absorption correction: ψ scan (North <i>et al.</i> , 1968))	$l = 0 \rightarrow 15$	
$T_{\min} = 0.950, \ T_{\max} = 0.994$	3 standard reflections	
2178 measured reflections	every 200 reflections	
1885 independent reflections	intensity decay: none	
1144 reflections with $I > 2\sigma(I)$		

Cell parameters from 25 reflections

 $\theta = 8 - 12^{\circ}$ $\mu=0.13~mm^{-1}$ T = 293 (2) KNeedle, colourless $0.40 \times 0.05 \times 0.05 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.073$	H-atom parameters constrained
$wR(F^2) = 0.172$	$w = 1/[\sigma^2(F_0^2) + (0.05P)^2 + 0.6P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{max} < 0.001$
1885 reflections	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
154 parameters	$\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ν	0.5209 (9)	0.7040 (3)	0.8012 (3)	0.0572 (8)
01	0.7307 (7)	0.1642 (2)	0.5059(2)	0.0642 (8)
C1	0.8443 (12)	0.0907 (4)	0.4027 (3)	0.0717 (13)
H1A	0.8215	-0.0010	0.3965	0.108*
H1B	1.0748	0.1145	0.3992	0.108*
H1C	0.7126	0.1094	0.3431	0.108*
O2	0.8638 (9)	0.3487 (3)	0.4668 (2)	0.0825 (10)
C2	0.7532 (9)	0.2943 (3)	0.5284 (3)	0.0480 (9)

O3	0.2103 (7)	0.1601 (2)	0.8322 (2)	0.0608 (8)
C3	0.0691 (12)	0.0824 (4)	0.8961 (4)	0.0703 (12)
H3A	0.0833	-0.0086	0.8583	0.105*
H3B	-0.1610	0.1022	0.9054	0.105*
H3C	0.1906	0.1016	0.9671	0.105*
O4	0.1018 (8)	0.3426 (3)	0.9595 (2)	0.0739 (9)
C4	0.2108 (9)	0.2883 (3)	0.8735 (3)	0.0482 (9)
C5	0.3639 (8)	0.3588 (3)	0.8013 (3)	0.0424 (8)
05	0.3683 (10)	0.7593 (3)	0.8783 (3)	0.0957 (12)
C6	0.3703 (9)	0.4947 (3)	0.8341 (3)	0.0465 (9)
H6A	0.2839	0.5401	0.8996	0.056*
O6	0.6840 (9)	0.7614 (3)	0.7524 (3)	0.0910 (11)
C7	0.5090 (8)	0.5598 (3)	0.7663 (3)	0.0445 (8)
C8	0.6352 (8)	0.4972 (3)	0.6687 (3)	0.0457 (8)
H8A	0.7276	0.5447	0.6254	0.055*
C9	0.6236 (9)	0.3612 (3)	0.6351 (3)	0.0448 (8)
C10	0.4871 (8)	0.2942 (3)	0.7022 (3)	0.0450 (8)
H10A	0.4781	0.2033	0.6802	0.054*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ν	0.065 (2)	0.0474 (18)	0.061 (2)	0.0053 (16)	0.0112 (17)	0.0155 (16)
01	0.091 (2)	0.0508 (15)	0.0511 (15)	0.0022 (14)	0.0238 (14)	0.0100 (12)
C1	0.099 (4)	0.062 (2)	0.054 (2)	0.013 (2)	0.027 (2)	0.009 (2)
O2	0.124 (3)	0.0604 (17)	0.0677 (19)	-0.0108 (17)	0.0448 (18)	0.0181 (15)
C2	0.049 (2)	0.0464 (19)	0.050 (2)	-0.0043 (16)	0.0047 (17)	0.0156 (17)
O3	0.085 (2)	0.0465 (14)	0.0549 (16)	0.0031 (13)	0.0257 (14)	0.0166 (12)
C3	0.089 (3)	0.057 (2)	0.072 (3)	-0.002 (2)	0.027 (2)	0.025 (2)
O4	0.105 (2)	0.0593 (17)	0.0644 (18)	0.0145 (16)	0.0411 (17)	0.0209 (14)
C4	0.049 (2)	0.049 (2)	0.048 (2)	0.0061 (16)	0.0103 (17)	0.0131 (17)
C5	0.0417 (19)	0.0443 (18)	0.0420 (19)	0.0034 (15)	0.0021 (15)	0.0139 (15)
O5	0.134 (3)	0.0523 (17)	0.107 (3)	0.0219 (18)	0.057 (2)	0.0198 (17)
C6	0.050 (2)	0.0473 (19)	0.0437 (19)	0.0042 (16)	0.0029 (16)	0.0145 (16)
O6	0.131 (3)	0.0527 (17)	0.089 (2)	-0.0210 (18)	0.036 (2)	0.0148 (16)
C7	0.0388 (19)	0.0405 (17)	0.054 (2)	0.0001 (15)	-0.0011 (16)	0.0137 (16)
C8	0.045 (2)	0.0507 (19)	0.0432 (19)	-0.0005 (16)	0.0012 (16)	0.0174 (16)
C9	0.047 (2)	0.0464 (19)	0.0412 (18)	0.0013 (16)	0.0028 (16)	0.0127 (15)
C10	0.044 (2)	0.0449 (18)	0.046 (2)	-0.0032 (15)	0.0042 (16)	0.0130 (16)

Geometric parameters (Å, °)

N—06	1.194 (4)	С3—Н3В	0.9600
N—O5	1.204 (4)	С3—Н3С	0.9600
N—C7	1.475 (4)	O4—C4	1.198 (4)
O1—C2	1.336 (4)	C4—C5	1.485 (5)
O1—C1	1.433 (4)	C5—C10	1.381 (4)
C1—H1A	0.9600	C5—C6	1.391 (5)
C1—H1B	0.9600	C6—C7	1.378 (5)

supplementary materials

C1—H1C	0.9600	С6—Н6А	0.9300
O2—C2	1.193 (4)	C7—C8	1.366 (5)
С2—С9	1.475 (5)	C8—C9	1.392 (5)
O3—C4	1.320 (4)	C8—H8A	0.9300
O3—C3	1.438 (4)	C9—C10	1.381 (5)
С3—НЗА	0.9600	C10—H10A	0.9300
O6—N—O5	122.5 (3)	O4—C4—C5	123.3 (3)
O6—N—C7	118.6 (3)	O3—C4—C5	112.4 (3)
O5—N—C7	118.9 (3)	C10—C5—C6	119.7 (3)
C2—O1—C1	116.9 (3)	C10—C5—C4	122.3 (3)
O1—C1—H1A	109.5	C6—C5—C4	117.9 (3)
O1—C1—H1B	109.5	C7—C6—C5	117.8 (3)
H1A—C1—H1B	109.5	С7—С6—Н6А	121.1
O1—C1—H1C	109.5	С5—С6—Н6А	121.1
H1A—C1—H1C	109.5	C8—C7—C6	123.1 (3)
H1B—C1—H1C	109.5	C8—C7—N	118.7 (3)
O2—C2—O1	122.5 (3)	C6—C7—N	118.2 (3)
O2—C2—C9	124.5 (3)	C7—C8—C9	119.0 (3)
O1—C2—C9	112.9 (3)	С7—С8—Н8А	120.5
C4—O3—C3	116.9 (3)	С9—С8—Н8А	120.5
O3—C3—H3A	109.5	C10—C9—C8	118.7 (3)
O3—C3—H3B	109.5	C10—C9—C2	122.6 (3)
НЗА—СЗ—НЗВ	109.5	C8—C9—C2	118.7 (3)
O3—C3—H3C	109.5	C5—C10—C9	121.6 (3)
НЗА—СЗ—НЗС	109.5	C5-C10-H10A	119.2
НЗВ—СЗ—НЗС	109.5	C9—C10—H10A	119.2
O4—C4—O3	124.3 (3)		
C1—O1—C2—O2	-0.4 (6)	O6—N—C7—C6	168.8 (4)
C1—O1—C2—C9	178.7 (3)	O5—N—C7—C6	-10.6 (5)
C3—O3—C4—O4	-0.1 (6)	C6—C7—C8—C9	0.2 (5)
C3—O3—C4—C5	179.7 (3)	N—C7—C8—C9	-179.7 (3)
O4—C4—C5—C10	-179.8 (4)	C7—C8—C9—C10	-0.6 (5)
O3—C4—C5—C10	0.4 (5)	C7—C8—C9—C2	178.6 (3)
O4—C4—C5—C6	-2.1 (5)	O2—C2—C9—C10	177.7 (4)
O3—C4—C5—C6	178.1 (3)	O1—C2—C9—C10	-1.4 (5)
C10—C5—C6—C7	-1.5 (5)	O2—C2—C9—C8	-1.4 (6)
C4—C5—C6—C7	-179.3 (3)	O1—C2—C9—C8	179.5 (3)
C5—C6—C7—C8	0.8 (5)	C6-C5-C10-C9	1.2 (5)
C5—C6—C7—N	-179.2 (3)	C4—C5—C10—C9	178.9 (3)
O6—N—C7—C8	-11.2 (5)	C8—C9—C10—C5	-0.1 (5)
O5—N—C7—C8	169.4 (4)	C2-C9-C10-C5	-179.3 (3)

